Friday, 12 August 2011

Tutorial of Accelerometer in android

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*      http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.example.android.accelerometerplay;
import android.app.Activity;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.BitmapFactory.Options;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.os.PowerManager;
import android.os.PowerManager.WakeLock;
import android.util.DisplayMetrics;
import android.view.Display;
import android.view.Surface;
import android.view.View;
import android.view.WindowManager;
/**
* This is an example of using the accelerometer to integrate the device's
* acceleration to a position using the Verlet method. This is illustrated with
* a very simple particle system comprised of a few iron balls freely moving on
* an inclined wooden table. The inclination of the virtual table is controlled
* by the device's accelerometer.
*
* @see SensorManager
* @see SensorEvent
* @see Sensor
*/
public class AccelerometerPlayActivity extends Activity {

   private SimulationView mSimulationView;
   private SensorManager mSensorManager;
   private PowerManager mPowerManager;
   private WindowManager mWindowManager;
   private Display mDisplay;
   private WakeLock mWakeLock;

   /** Called when the activity is first created. */
   @Override
   public void onCreate(Bundle savedInstanceState) {
       super.onCreate(savedInstanceState);

       // Get an instance of the SensorManager
       mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

       // Get an instance of the PowerManager
       mPowerManager = (PowerManager) getSystemService(POWER_SERVICE);

       // Get an instance of the WindowManager
       mWindowManager = (WindowManager) getSystemService(WINDOW_SERVICE);
       mDisplay = mWindowManager.getDefaultDisplay();

       // Create a bright wake lock
       mWakeLock = mPowerManager.newWakeLock(PowerManager.SCREEN_BRIGHT_WAKE_LOCK, getClass()
               .getName());

       // instantiate our simulation view and set it as the activity's content
       mSimulationView = new SimulationView(this);
       setContentView(mSimulationView);
   }

   @Override
   protected void onResume() {
       super.onResume();
       /*
        * when the activity is resumed, we acquire a wake-lock so that the
        * screen stays on, since the user will likely not be fiddling with the
        * screen or buttons.
        */
       mWakeLock.acquire();

       // Start the simulation
       mSimulationView.startSimulation();
   }

   @Override
   protected void onPause() {
       super.onPause();
       /*
        * When the activity is paused, we make sure to stop the simulation,
        * release our sensor resources and wake locks
        */

       // Stop the simulation
       mSimulationView.stopSimulation();

       // and release our wake-lock
       mWakeLock.release();
   }

   class SimulationView extends View implements SensorEventListener {
       // diameter of the balls in meters
       private static final float sBallDiameter = 0.004f;
       private static final float sBallDiameter2 = sBallDiameter * sBallDiameter;

       // friction of the virtual table and air
       private static final float sFriction = 0.1f;

       private Sensor mAccelerometer;
       private long mLastT;
       private float mLastDeltaT;

       private float mXDpi;
       private float mYDpi;
       private float mMetersToPixelsX;
       private float mMetersToPixelsY;
       private Bitmap mBitmap;
       private Bitmap mWood;
       private float mXOrigin;
       private float mYOrigin;
       private float mSensorX;
       private float mSensorY;
       private long mSensorTimeStamp;
       private long mCpuTimeStamp;
       private float mHorizontalBound;
       private float mVerticalBound;
       private final ParticleSystem mParticleSystem = new ParticleSystem();

       /*
        * Each of our particle holds its previous and current position, its
        * acceleration. for added realism each particle has its own friction
        * coefficient.
        */
       class Particle {
           private float mPosX;
           private float mPosY;
           private float mAccelX;
           private float mAccelY;
           private float mLastPosX;
           private float mLastPosY;
           private float mOneMinusFriction;

           Particle() {
               // make each particle a bit different by randomizing its
               // coefficient of friction
               final float r = ((float) Math.random() - 0.5f) * 0.2f;
               mOneMinusFriction = 1.0f - sFriction + r;
           }

           public void computePhysics(float sx, float sy, float dT, float dTC) {
               // Force of gravity applied to our virtual object
               final float m = 1000.0f; // mass of our virtual object
               final float gx = -sx * m;
               final float gy = -sy * m;

               /*
                * �F = mA <=> A = �F / m We could simplify the code by
                * completely eliminating "m" (the mass) from all the equations,
                * but it would hide the concepts from this sample code.
                */
               final float invm = 1.0f / m;
               final float ax = gx * invm;
               final float ay = gy * invm;

               /*
                * Time-corrected Verlet integration The position Verlet
                * integrator is defined as x(t+�t) = x(t) + x(t) - x(t-�t) +
                * a(t)�t�2 However, the above equation doesn't handle variable
                * �t very well, a time-corrected version is needed: x(t+�t) =
                * x(t) + (x(t) - x(t-�t)) * (�t/�t_prev) + a(t)�t�2 We also add
                * a simple friction term (f) to the equation: x(t+�t) = x(t) +
                * (1-f) * (x(t) - x(t-�t)) * (�t/�t_prev) + a(t)�t�2
                */
               final float dTdT = dT * dT;
               final float x = mPosX + mOneMinusFriction * dTC * (mPosX - mLastPosX) + mAccelX
                       * dTdT;
               final float y = mPosY + mOneMinusFriction * dTC * (mPosY - mLastPosY) + mAccelY
                       * dTdT;
               mLastPosX = mPosX;
               mLastPosY = mPosY;
               mPosX = x;
               mPosY = y;
               mAccelX = ax;
               mAccelY = ay;
           }

           /*
            * Resolving constraints and collisions with the Verlet integrator
            * can be very simple, we simply need to move a colliding or
            * constrained particle in such way that the constraint is
            * satisfied.
            */
           public void resolveCollisionWithBounds() {
               final float xmax = mHorizontalBound;
               final float ymax = mVerticalBound;
               final float x = mPosX;
               final float y = mPosY;
               if (x > xmax) {
                   mPosX = xmax;
               } else if (x < -xmax) {
                   mPosX = -xmax;
               }
               if (y > ymax) {
                   mPosY = ymax;
               } else if (y < -ymax) {
                   mPosY = -ymax;
               }
           }
       }

       /*
        * A particle system is just a collection of particles
        */
       class ParticleSystem {
           static final int NUM_PARTICLES = 15;
           private Particle mBalls[] = new Particle[NUM_PARTICLES];

           ParticleSystem() {
               /*
                * Initially our particles have no speed or acceleration
                */
               for (int i = 0; i < mBalls.length; i++) {
                   mBalls[i] = new Particle();
               }
           }

           /*
            * Update the position of each particle in the system using the
            * Verlet integrator.
            */
           private void updatePositions(float sx, float sy, long timestamp) {
               final long t = timestamp;
               if (mLastT != 0) {
                   final float dT = (float) (t - mLastT) * (1.0f / 1000000000.0f);
                   if (mLastDeltaT != 0) {
                       final float dTC = dT / mLastDeltaT;
                       final int count = mBalls.length;
                       for (int i = 0; i < count; i++) {
                           Particle ball = mBalls[i];
                           ball.computePhysics(sx, sy, dT, dTC);
                       }
                   }
                   mLastDeltaT = dT;
               }
               mLastT = t;
           }

           /*
            * Performs one iteration of the simulation. First updating the
            * position of all the particles and resolving the constraints and
            * collisions.
            */
           public void update(float sx, float sy, long now) {
               // update the system's positions
               updatePositions(sx, sy, now);

               // We do no more than a limited number of iterations
               final int NUM_MAX_ITERATIONS = 10;

               /*
                * Resolve collisions, each particle is tested against every
                * other particle for collision. If a collision is detected the
                * particle is moved away using a virtual spring of infinite
                * stiffness.
                */
               boolean more = true;
               final int count = mBalls.length;
               for (int k = 0; k < NUM_MAX_ITERATIONS && more; k++) {
                   more = false;
                   for (int i = 0; i < count; i++) {
                       Particle curr = mBalls[i];
                       for (int j = i + 1; j < count; j++) {
                           Particle ball = mBalls[j];
                           float dx = ball.mPosX - curr.mPosX;
                           float dy = ball.mPosY - curr.mPosY;
                           float dd = dx * dx + dy * dy;
                           // Check for collisions
                           if (dd <= sBallDiameter2) {
                               /*
                                * add a little bit of entropy, after nothing is
                                * perfect in the universe.
                                */
                               dx += ((float) Math.random() - 0.5f) * 0.0001f;
                               dy += ((float) Math.random() - 0.5f) * 0.0001f;
                               dd = dx * dx + dy * dy;
                               // simulate the spring
                               final float d = (float) Math.sqrt(dd);
                               final float c = (0.5f * (sBallDiameter - d)) / d;
                               curr.mPosX -= dx * c;
                               curr.mPosY -= dy * c;
                               ball.mPosX += dx * c;
                               ball.mPosY += dy * c;
                               more = true;
                           }
                       }
                       /*
                        * Finally make sure the particle doesn't intersects
                        * with the walls.
                        */
                       curr.resolveCollisionWithBounds();
                   }
               }
           }

           public int getParticleCount() {
               return mBalls.length;
           }

           public float getPosX(int i) {
               return mBalls[i].mPosX;
           }

           public float getPosY(int i) {
               return mBalls[i].mPosY;
           }
       }

       public void startSimulation() {
           /*
            * It is not necessary to get accelerometer events at a very high
            * rate, by using a slower rate (SENSOR_DELAY_UI), we get an
            * automatic low-pass filter, which "extracts" the gravity component
            * of the acceleration. As an added benefit, we use less power and
            * CPU resources.
            */
           mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_UI);
       }

       public void stopSimulation() {
           mSensorManager.unregisterListener(this);
       }

       public SimulationView(Context context) {
           super(context);
           mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

           DisplayMetrics metrics = new DisplayMetrics();
           getWindowManager().getDefaultDisplay().getMetrics(metrics);
           mXDpi = metrics.xdpi;
           mYDpi = metrics.ydpi;
           mMetersToPixelsX = mXDpi / 0.0254f;
           mMetersToPixelsY = mYDpi / 0.0254f;

           // rescale the ball so it's about 0.5 cm on screen
           Bitmap ball = BitmapFactory.decodeResource(getResources(), R.drawable.ball);
           final int dstWidth = (int) (sBallDiameter * mMetersToPixelsX + 0.5f);
           final int dstHeight = (int) (sBallDiameter * mMetersToPixelsY + 0.5f);
           mBitmap = Bitmap.createScaledBitmap(ball, dstWidth, dstHeight, true);

           Options opts = new Options();
           opts.inDither = true;
           opts.inPreferredConfig = Bitmap.Config.RGB_565;
           mWood = BitmapFactory.decodeResource(getResources(), R.drawable.wood, opts);
       }

       @Override
       protected void onSizeChanged(int w, int h, int oldw, int oldh) {
           // compute the origin of the screen relative to the origin of
           // the bitmap
           mXOrigin = (w - mBitmap.getWidth()) * 0.5f;
           mYOrigin = (h - mBitmap.getHeight()) * 0.5f;
           mHorizontalBound = ((w / mMetersToPixelsX - sBallDiameter) * 0.5f);
           mVerticalBound = ((h / mMetersToPixelsY - sBallDiameter) * 0.5f);
       }

       @Override
       public void onSensorChanged(SensorEvent event) {
           if (event.sensor.getType() != Sensor.TYPE_ACCELEROMETER)
               return;
           /*
            * record the accelerometer data, the event's timestamp as well as
            * the current time. The latter is needed so we can calculate the
            * "present" time during rendering. In this application, we need to
            * take into account how the screen is rotated with respect to the
            * sensors (which always return data in a coordinate space aligned
            * to with the screen in its native orientation).
            */

           switch (mDisplay.getRotation()) {
               case Surface.ROTATION_0:
                   mSensorX = event.values[0];
                   mSensorY = event.values[1];
                   break;
               case Surface.ROTATION_90:
                   mSensorX = -event.values[1];
                   mSensorY = event.values[0];
                   break;
               case Surface.ROTATION_180:
                   mSensorX = -event.values[0];
                   mSensorY = -event.values[1];
                   break;
               case Surface.ROTATION_270:
                   mSensorX = event.values[1];
                   mSensorY = -event.values[0];
                   break;
           }

           mSensorTimeStamp = event.timestamp;
           mCpuTimeStamp = System.nanoTime();
       }

       @Override
       protected void onDraw(Canvas canvas) {

           /*
            * draw the background
            */

           canvas.drawBitmap(mWood, 0, 0, null);

           /*
            * compute the new position of our object, based on accelerometer
            * data and present time.
            */

           final ParticleSystem particleSystem = mParticleSystem;
           final long now = mSensorTimeStamp + (System.nanoTime() - mCpuTimeStamp);
           final float sx = mSensorX;
           final float sy = mSensorY;

           particleSystem.update(sx, sy, now);

           final float xc = mXOrigin;
           final float yc = mYOrigin;
           final float xs = mMetersToPixelsX;
           final float ys = mMetersToPixelsY;
           final Bitmap bitmap = mBitmap;
           final int count = particleSystem.getParticleCount();
           for (int i = 0; i < count; i++) {
               /*
                * We transform the canvas so that the coordinate system matches
                * the sensors coordinate system with the origin in the center
                * of the screen and the unit is the meter.
                */

               final float x = xc + particleSystem.getPosX(i) * xs;
               final float y = yc - particleSystem.getPosY(i) * ys;
               canvas.drawBitmap(bitmap, x, y, null);
           }

           // and make sure to redraw asap
           invalidate();
       }

       @Override
       public void onAccuracyChanged(Sensor sensor, int accuracy) {
       }
   }
}

0 comments:

Twitter Delicious Facebook Digg Stumbleupon Favorites More